Mouse PAI-1 total antigen assay ELISA kit

$475$2,015

Clear
SKU: MPAIKT-TOT Categories: ,

Product Description

Plasminogen activator inhibitor type 1 (PAI-1) is involved in the regulation of the blood fibrinolytic system. Increased plasma levels of PAI-1 are implicated in the impairment of fibrinolytic function and may be associated with thrombotic diseases. Levels of PAI-1 increase with age and are elevated in conditions such as normal pregnancy and sepsis. The sensitive quantitative measurement of total mouse PAI-1 antigen in plasma samples is easily performed with this 96 well strip format ELISA kit. The concentration level of PAI-1 antigen in mouse plasma was found to be 1.9 ng/ml. The assay measures mouse PAI-1 in the 0.05-50 ng/ml range. Samples giving mouse PAI-1 levels above 50 ng/ml should be diluted in blocking buffer before use. Normal plasma should be applied directly to the plate for best results. It is important to ensure a platelet free preparation of plasma as platelets can release PAI-1. Mouse PAI-1 will bind to the capture antibody coated on the microtiter plate. Free, latent, and complexed PAI-1 will be detected by the assay. Cross-reactivity: 2percent porcine PAI-1, 1.7percent human PAI-1, 0.5percent rabbit PAI-1, 0.3percent rat PAI-1. After appropriate washing steps, anti-mouse PAI-1 primary antibody binds to the captured protein. Excess primary antibody is washed away and bound antibody is reacted with the secondary antibody conjugated to HRP. Following an additional washing step, TMB substrate is used for color development at 450 nm. Color development is proportional to the concentration of mouse PAI-1 in the samples. A standard calibration curve is prepared in blocking buffer using dilutions of purified mouse PAI-1 and is measured along with the test samples. All reagents and standards are provided in these ELISA kits.Negative control: PAI-1 genetically deficient mouse plasmaSuggested additional reagents: 10X Wash Buffer, TMB Substrate, Mouse PAI-1 Antigen Capture Plate, Secondary AntibodyGene ID: 18787
Swiss-Prot/UniProt ID: P22777View sample datasheet
View kit instruction sheet
View sample certificate of analysis
View material safety data sheet
Ask a question about this product

Additional Information

Source

Epitope

Host

Species

Storage

Shipping Conditions

Expiration

Form

Sample Size

Gene Name

Gene ID

UniProt ID

1. Sejima T, Madoiwa S, Mimuro J et-al. Protection of plasminogen activator inhibitor-1-deficient mice from nasal allergy. J. Immunol. 2005;174 (12): 8135-43. J. Immunol. (link)Pubmed citation

2. Arndt PG, Young SK, Worthen GS. Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator Inhibitor-1 through a JNK-mediated pathway. J. Immunol. 2005;175 (6): 4049-59. J. Immunol. (link)Pubmed citation

3. Shushakova N, Eden G, Dangers M et-al. The urokinase/urokinase receptor system mediates the IgG immune complex-induced inflammation in lung. J. Immunol. 2005;175 (6): 4060-8. J. Immunol. (link)Pubmed citation

4. Vayalil PK, Olman M, Murphy-ullrich JE et-al. Glutathione restores collagen degradation in TGF-beta-treated fibroblasts by blocking plasminogen activator inhibitor-1 expression and activating plasminogen. Am. J. Physiol. Lung Cell Mol. Physiol. 2005;289 (6): L937-45. doi:10.1152/ajplung.00150.2005Pubmed citation

5. Roelofs JJ, Rouschop KM, Leemans JC et-al. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. J. Am. Soc. Nephrol. 2006;17 (1): 131-40. doi:10.1681/ASN.2005010089Pubmed citation

6. Crandall DL, Quinet EM, El ayachi S et-al. Modulation of adipose tissue development by pharmacological inhibition of PAI-1. Arterioscler. Thromb. Vasc. Biol. 2006;26 (10): 2209-15. doi:10.1161/01.ATV.0000235605.51400.9dPubmed citation

7. De taeye BM, Novitskaya T, Gleaves L et-al. Bone marrow plasminogen activator inhibitor-1 influences the development of obesity. J. Biol. Chem. 2006;281 (43): 32796-805. doi:10.1074/jbc.M606214200Pubmed citation

8. Arndt PG, Young SK, Poch KR et-al. Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin II-regulated pathways. J. Immunol. 2006;177 (10): 7233-41. J. Immunol. (link)Pubmed citation

9. Allen GB, Leclair T, Cloutier M et-al. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am. J. Physiol. Lung Cell Mol. Physiol. 2007;292 (6): L1580-9. doi:10.1152/ajplung.00483.2006Pubmed citation

10. Norris EH, Strickland S. Modulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc. Natl. Acad. Sci. U.S.A. 2007;104 (33): 13473-8. doi:10.1073/pnas.0705848104Free text at pubmedPubmed citation

11. Chandrasekar B, Patel DN, Mummidi S et-al. Interleukin-18 suppresses adiponectin expression in 3T3-L1 adipocytes via a novel signal transduction pathway involving ERK1/2-dependent NFATc4 phosphorylation. J. Biol. Chem. 2008;283 (7): 4200-9. doi:10.1074/jbc.M708142200Pubmed citation

12. Looney MR, Esmon CT, Matthay MA. Role of coagulation pathways and treatment with activated protein C in hyperoxic lung injury. Thorax. 2009;64 (2): 114-20. doi:10.1136/thx.2008.099135Pubmed citation

13. Allen GB, Cloutier ME, Larrabee YC et-al. Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse model of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;296 (3): L277-85. doi:10.1152/ajplung.90475.2008Free text at pubmedPubmed citation

14. Kuramoto E, Nishiuma T, Kobayashi K et-al. Inhalation of urokinase-type plasminogen activator reduces airway remodeling in a murine asthma model. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;296 (3): L337-46. doi:10.1152/ajplung.90434.2008Pubmed citation

15. Maiya R, Zhou Y, Norris EH et-al. Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc. Natl. Acad. Sci. U.S.A. 2009;106 (6): 1983-8. doi:10.1073/pnas.0812491106Free text at pubmedPubmed citation

16. Song D, Ye X, Xu H et-al. Activation of endothelial intrinsic NF-{kappa}B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood. 2009;114 (12): 2521-9. doi:10.1182/blood-2009-02-205914Free text at pubmedPubmed citation

17. Oishi K, Uchida D, Ohkura N et-al. Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol. 2009;29 (10): 1571-7. doi:10.1161/ATVBAHA.109.190140Pubmed citation

18. Riehl TE, He L, Zheng L et-al. COX-1(+/-)COX-2(-/-) genotype in mice is associated with shortened time to carotid artery occlusion through increased PAI-1. J. Thromb. Haemost. 2011;9 (2): 350-60. doi:10.1111/j.1538-7836.2010.04156.xFree text at pubmedPubmed citation

19. Huang WT, Vayalil PK, Miyata T et-al. Therapeutic value of small molecule inhibitor to plasminogen activator inhibitor-1 for lung fibrosis. Am. J. Respir. Cell Mol. Biol. 2012;46 (1): 87-95. doi:10.1165/rcmb.2011-0139OCFree text at pubmedPubmed citation

20. Kenny S, Gamble J, Lyons S et-al. Gastric expression of plasminogen activator inhibitor (PAI)-1 is associated with hyperphagia and obesity in mice. Endocrinology. 2013;154 (2): 718-26. doi:10.1210/en.2012-1913Free text at pubmedPubmed citation

21. Kenny S, Steele I, Lyons S et-al. The role of plasminogen activator inhibitor-1 in gastric mucosal protection. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304 (9): G814-22. doi:10.1152/ajpgi.00017.2013Free text at pubmedPubmed citation

22. Yokota J, Jobu K, Yoshioka S et-al. The influence of Goishi tea on adipocytokines in obese mice. Food Chem. 2013;138 (4): 2210-8. doi:10.1016/j.foodchem.2012.12.010Pubmed citation

23. Park KS. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-?-induced inflammatory responses through suppression of NF-?B activation in 3T3-L1 adipocytes. Cytokine. 2013;62 (3): 407-12. doi:10.1016/j.cyto.2013.04.005Pubmed citation

24. Gamble J, Kenny S, Dockray GJ. Plasminogen activator inhibitor (PAI)-1 suppresses inhibition of gastric emptying by cholecystokinin (CCK) in mice. Regul. Pept. 2013;185 : 9-13. doi:10.1016/j.regpep.2013.06.005Free text at pubmedPubmed citation

25. Tamura, Y., Kawao, N., Yano, M., Okada , K., Matsuo, O., & Kaji, H. (2014, February 28). Plasminogen Activator Inhibitor-1 Deficiency Ameliorates Insulin Resistance and Hyperlipidemia but not Bone Loss in Obese Female Mice. Retrieved March 11, 2014, from Link to article

26. Eren M, Boe AE, Murphy SB et-al. PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc. Natl. Acad. Sci. U.S.A. 2014;111 (19): 7090-5. doi:10.1073/pnas.1321942111Free text at pubmedPubmed citation

27. Farhat YM, Al-maliki AA, Easa A, O’keefe RJ, Schwarz EM, Awad HA. TGF-beta1 Suppresses Plasmin and MMP Activity in Flexor Tendon Cells via PAI-1: Implications for Scarless Flexor Tendon Repair. J Cell Physiol. 2014. Link to article

28. Ji Y, Fish PM, Strawn TL, et al. C-reactive protein induces expression of tissue factor and plasminogen activator inhibitor-1 and promotes fibrin accumulation in vein grafts. J Thromb Haemost. 2014;12(10):1667-77. Link to article

29. Yan L, Combs GF. Consumption of a high-fat diet abrogates inhibitory effects of methylseleninic acid on spontaneous metastasis of Lewis lung carcinoma in mice. Carcinogenesis. 2014;35(10):2308-13. Link to article

30. Ohkura N, Oishi K, Atsumi GI. Blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice. Blood Coagul Fibrinolysis. 2015 Link to article

31. Darehzereshki A, Rubin N, Gamba L, et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol. 2015;399(1):91-9. Link to article

32. Siefert SA, Chabasse C, Mukhopadhyay S, et al. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice. J Thromb Haemost. 2014;12(10):1706-16. Link to article

33. Yan L, Combs GF. Consumption of a high-fat diet abrogates inhibitory effects of methylseleninic acid on spontaneous metastasis of Lewis lung carcinoma in mice. Carcinogenesis. 2014;35(10):2308-13. Link to article

34. Sundaram S, Bukowski MR, Lie WR, Picklo MJ, Yan L. High-Fat Diets Containing Different Amounts of n3 and n6 Polyunsaturated Fatty Acids Modulate Inflammatory Cytokine Production in Mice. Lipids. 2015;

35. Zhang Y, Yu X, Yuan Y, et al. Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet. 2004;129B(1):16-9.Link to article

36. Leibrock CB, Voelkl J, Kuro-o M, Lang F, Lang UE. 1,25(OH)2D3 dependent overt hyperactivity phenotype in klotho-hypomorphic mice. Sci Rep. 2016;6:24879. Link to article

37. Sellmann C, Jin CJ, Degen C, De bandt JP, Bergheim I. Oral Glutamine Supplementation Protects Female Mice from Nonalcoholic Steatohepatitis. J Nutr. 2015;145(10):2280-6. Link to article

38. Park EJ, Kim YM, Kim HJ, et al. (S)YS-51, a novel isoquinoline alkaloid, attenuates obesity-associated non-alcoholic fatty liver disease in mice by suppressing lipogenesis, inflammation and coagulation. Eur J Pharmacol. 2016;788:200-9. Link to artice

39. Rogers KA, Moreno SE, Smith LA, et al. Differences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD. Physiol Rep. 2016;4(12). Link to article

40. Eddy JL, Schroeder JA, Zimbler DL, Caulfield AJ, Lathem WW. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence. J Thromb Haemost. 2016;14(9):1833-43. Link to article

41. Sellmann C, Jin CJ, Engstler AJ, De bandt JP, Bergheim I. Oral citrulline supplementation protects female mice from the development of non-alcoholic fatty liver disease (NAFLD). Eur J Nutr. 2016; Link to article

42. Lee MT, Lee CC, Wang HM, et al. Hypothermia Increases Tissue Plasminogen Activator Expression and Decreases Post-Operative Intra-Abdominal Adhesion. PLoS ONE. 2016;11(9):e0160627. Link to article

43. Ohkura N, Oishi K, Kihara-Negishi F, Atsumi G, Tatefuji T. Effects of a diet containing Brazilian propolis on lipopolysaccharide-induced increases in plasma plasminogen activator inhibitor 1 (PAI-1) levels in mice. www.scopemed.org/?mno= [Access: October 02, 2016]. doi:10.5455/jice.20160814112735

44. Elkhidir HS, Richards JB, Cromar KR, et al. Plasminogen activator inhibitor-1 does not contribute to the pulmonary pathology induced by acute exposure to ozone. Physiol Rep. 2016;4(18)

45. Engstler AJ, Sellmann C, Jin CJ, et al. Treatment with alpha-galactosylceramide protects mice from early onset of nonalcoholic steatohepatitis: Role of intestinal barrier function. Mol Nutr Food Res. 2017;61(5). Link to article

46. Lindenblatt N, Menger MD, Klar E, Vollmar B. Systemic hypothermia increases PAI-1 expression and accelerates microvascular thrombus formation in endotoxemic mice. Crit Care. 2006;10(5):R148. Link to article

47. Poole LG, Massey VL, Siow DL, et al. Plasminogen Activator Inhibitor-1 is Critical in Alcohol-enhanced Acute Lung Injury in Mice. Am J Respir Cell Mol Biol. 2017; Link to article

48. Sutton NR, Hayasaki T, Hyman MC, et al. Ectonucleotidase CD39-driven control of postinfarction myocardial repair and rupture. JCI Insight. 2017;2(1):e89504. Link to article

49. Ohkura N, Oishi K, Fukushima N, et al. Circadian clock molecules CLOCK and CRYs modulate fibrinolytic activity by regulating the PAI-1 gene expression. J Thromb Haemost. 2006;4(11):2478-85. Link to article

50. Oishi K, Koyanagi S, Ohkura N. Circadian mRNA expression of coagulation and fibrinolytic factors is organ-dependently disrupted in aged mice. Exp Gerontol. 2011;46(12):994-9. Link to article

51. Oishi K, Ohkura N, Kasamatsu M, et al. Tissue-specific augmentation of circadian PAI-1 expression in mice with streptozotocin-induced diabetes. Thromb Res. 2004;114(2):129-35. Link to article

52. Sellmann C, Baumann A, Brandt A, Jin CJ, Nier A, Bergheim I. Oral Supplementation of Glutamine Attenuates the Progression of Nonalcoholic Steatohepatitis in C57BL/6J Mice. J Nutr. 2017;147(11):2041-2049. Link to article

53. Bedarida T, Domingues A, Baron S, et al. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo. FASEB J. 2018;:fj201700856RRR. Link to article

54. Naoki Ohkura; Fumiko Kihara-Negishi; Akira Fujii; Hiroaki Kanouchi; Katsutaka Oishi; Gen-Ichi Atsumi; Masanobu Nagano. Effects of Fermented Rice Vinegar Kurozu and Its Sediment on Inflammation-Induced Plasminogen Activator Inhibitor 1 (PAI-1) Increase. Food and Nutrition Sciences. 2018;09. Link to article

55. Freeberg MAT, Farhat YM, Easa A, et al. Serpine1 Knockdown Enhances MMP Activity after Flexor Tendon Injury in Mice: Implications for Adhesions Therapy. Sci Rep. 2018;8(1):5810. Link to article

56. Henke AS, et al. Inhibition of Plasminogen Activator Inhibitor 1 Attenuates Hepatic Steatosis but Does Not Prevent Progressive Nonalcoholic Steatohepatitis in Mice. Hepatology CommuniCations, Vol. 0, no. 0, 2018. Link to article

57. Zheng Z, Nayak L, Wang W, et al. An ATF6-tPA pathway in hepatocytes contributes to systemic fibrinolysis and is repressed by DACH1. Blood. 2019;133(7):743-753. Link to article