Active mouse PAI-1 functional assay ELISA kit


SKU: MPAIKT Categories: ,

Product Description

Active mouse PAI-1 functional assay ELISA kit

Plasminogen activator inhibitor type 1 (PAI-1) is involved in the regulation of the blood fibrinolytic system. Increased plasma levels of PAI-1 are implicated in the impairment of fibrinolytic function and may be associated with thrombotic diseases. Levels of PAI-1 increase with age and are elevated in conditions such as normal pregnancy and sepsis. The sensitive quantitative measurement of functionally active mouse PAI-1 in plasma samples is easily performed with this 96 well strip format ELISA kit. The concentration level of PAI-1 antigen in mouse plasma was found to be 1.9 ng/ml. The assay measures active PAI-1 in the 0.05-50 ng/ml range. Samples giving mouse PAI-1 levels above 50 ng/ml should be diluted in blocking buffer before use. Normal plasma should be applied directly to the plate for best results. It is important to ensure a platelet free preparation of plasma as platelets can release PAI-1. Functionally active PAI-1 reacts with urokinase coated onto a micro titer plate. Latent or complexed PAI-1 will not bind to the plate and will not be detected by the assay. Cross-reactivity: 29percent rat PAI-1, 18percent rabbit PAI-1, 0.6percent porcine PAI-1, 76percent human PAI-1. After appropriate washing steps, anti-mouse PAI-1 primary antibody binds to the captured enzyme. Excess antibody is washed away, and bound antibody is reacted with the secondary antibody conjugated to HRP. Following an additional washing step, TMB substrate is used for color development at 450 nm. Color development is proportional to the concentration of PAI-1 in the samples. A standard calibration curve is prepared using dilutions of purified PAI-1 and is measured along with the test samples. All reagents and standards are provided in these ELISA kits.
Negative control: PAI-1 genetically deficient mouse plasmaSuggested additional reagents: 10X Wash Buffer, TMB Substrate, uPA Plate, Secondary Antibody

Gene ID: 18787
Swiss-Prot/UniProt ID: P22777

View sample datasheet
View kit instruction sheet
View sample certificate of analysis
View material safety data sheet
Ask a question about this product

Additional Information






Shipping Conditions



Sample Size

Gene Name

Gene ID

UniProt ID

1. Iafrati MD, Vitseva O, Tanriverdi K et-al. Compensatory mechanisms influence hemostasis in setting of eNOS deficiency. Am. J. Physiol. Heart Circ. Physiol. 2005;288 (4): H1627-32. doi:10.1152/ajpheart.00819.2004Pubmed citation

2. Weisberg AD, Albornoz F, Griffin JP et-al. Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling. Arterioscler. Thromb. Vasc. Biol. 2005;25 (2): 365-71. doi:10.1161/01.ATV.0000152356.85791.52Pubmed citation

3. Arndt PG, Young SK, Worthen GS. Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator Inhibitor-1 through a JNK-mediated pathway. J. Immunol. 2005;175 (6): 4049-59. J. Immunol. (link)Pubmed citation

4. Smith LH, Dixon JD, Stringham JR et-al. Pivotal role of PAI-1 in a murine model of hepatic vein thrombosis. Blood. 2006;107 (1): 132-4. doi:10.1182/blood-2005-07-2681Free text at pubmedPubmed citation

5. Crandall DL, Quinet EM, El ayachi S et-al. Modulation of adipose tissue development by pharmacological inhibition of PAI-1. Arterioscler. Thromb. Vasc. Biol. 2006;26 (10): 2209-15. doi:10.1161/01.ATV.0000235605.51400.9dPubmed citation

6. Arndt PG, Young SK, Poch KR et-al. Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin II-regulated pathways. J. Immunol. 2006;177 (10): 7233-41. J. Immunol. (link)Pubmed citation

7. Allen GB, Leclair T, Cloutier M et-al. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am. J. Physiol. Lung Cell Mol. Physiol. 2007;292 (6): L1580-9. doi:10.1152/ajplung.00483.2006Pubmed citation

8. Norris EH, Strickland S. Modulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc. Natl. Acad. Sci. U.S.A. 2007;104 (33): 13473-8. doi:10.1073/pnas.0705848104Free text at pubmedPubmed citation

9. Chandrasekar B, Patel DN, Mummidi S et-al. Interleukin-18 suppresses adiponectin expression in 3T3-L1 adipocytes via a novel signal transduction pathway involving ERK1/2-dependent NFATc4 phosphorylation. J. Biol. Chem. 2008;283 (7): 4200-9. doi:10.1074/jbc.M708142200Pubmed citation

10. Shaw PJ, Ganey PE, Roth RA. Tumor necrosis factor alpha is a proximal mediator of synergistic hepatotoxicity from trovafloxacin/lipopolysaccharide coexposure. J. Pharmacol. Exp. Ther. 2009;328 (1): 62-8. doi:10.1124/jpet.108.143792Free text at pubmedPubmed citation

11. Zou W, Devi SS, Sparkenbaugh E et-al. Hepatotoxic interaction of sulindac with lipopolysaccharide: role of the hemostatic system. Toxicol. Sci. 2009;108 (1): 184-93. doi:10.1093/toxsci/kfn259Free text at pubmedPubmed citation

12. Kuramoto E, Nishiuma T, Kobayashi K et-al. Inhalation of urokinase-type plasminogen activator reduces airway remodeling in a murine asthma model. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;296 (3): L337-46. doi:10.1152/ajplung.90434.2008Pubmed citation

13. Song D, Ye X, Xu H et-al. Activation of endothelial intrinsic NF-{kappa}B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood. 2009;114 (12): 2521-9. doi:10.1182/blood-2009-02-205914Free text at pubmedPubmed citation

14. Riehl TE, He L, Zheng L et-al. COX-1(+/-)COX-2(-/-) genotype in mice is associated with shortened time to carotid artery occlusion through increased PAI-1. J. Thromb. Haemost. 2011;9 (2): 350-60. doi:10.1111/j.1538-7836.2010.04156.xFree text at pubmedPubmed citation

15. Singhal R, Ganey PE, Roth RA. Complement activation in acetaminophen-induced liver injury in mice. J. Pharmacol. Exp. Ther. 2012;341 (2): 377-85. doi:10.1124/jpet.111.189837Free text at pubmedPubmed citation

16. Lee SH, Eren M, Vaughan DE et-al. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma. Am. J. Respir. Cell Mol. Biol. 2012;46 (6): 842-6. doi:10.1165/rcmb.2011-0369OCFree text at pubmedPubmed citation

17. Li LF, Kao KC, Yang CT et-al. Ethyl pyruvate reduces ventilation-induced neutrophil infiltration and oxidative stress. Exp. Biol. Med. (Maywood). 2012;237 (6): 720-7. doi:10.1258/ebm.2012.011184Pubmed citation

18. Kenny S, Steele I, Lyons S et-al. The role of plasminogen activator inhibitor-1 in gastric mucosal protection. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304 (9): G814-22. doi:10.1152/ajpgi.00017.2013Free text at pubmedPubmed citation

19. Raeven P, Drechsler S, Weixelbaumer KM et-al. Systemic Inhibition and Liver-specific Overexpression of PAI-1 Failed to Improve Survival in All-inclusive Populations or Homogenous Cohorts of CLP Mice. J. Thromb. Haemost. 2014;doi:10.1111/jth.12565Pubmed citation

20. Mao L, Kawao N, Tamura Y et-al. Plasminogen activator inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice. PLoS ONE. 2014;9 (3): e92686. doi:10.1371/journal.pone.0092686Free text at pubmedPubmed citation

21. Swarbreck SB, Secor D, Ellis CG et-al. Short-term effect of ascorbate on bacterial content, plasminogen activator inhibitor-1, and myeloperoxidase in septic mice. J. Surg. Res. 2014;doi:10.1016/j.jss.2014.04.017Pubmed citation

22. Ohkura N, Oishi K, Atsumi GI. Blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice. Blood Coagul Fibrinolysis. 2015 Link to article

23. Kim, So Ra et al. ‘Ascorbic Acid Reduces HMGB1 Secretion In Lipopolysaccharide-Activated RAW 264.7 Cells And Improves Survival Rate In Septic Mice By Activation Of Nrf2/HO-1 Signals’. Biochemical Pharmacology 95.4 (2015): 279-289. Web. 5 June 2015. Link to article

24. Li LF, Liu YY, Kao KC, et al. Mechanical ventilation augments bleomycin-induced epithelial-mesenchymal transition through the Src pathway. Lab Invest. 2014;94(9):1017-29. Link to article

25. Chang KC. Cilostazol inhibits HMGB1 release in LPS-activated RAW 264.7 cells and increases the survival of septic mice. Thromb Res. 2015;136(2):456-64. Link to article

26. Kim YM, Kim JH, Park SW, Kim HJ, Chang KC. Retinoic acid inhibits tissue factor and HMGB1 via modulation of AMPK activity in TNF-? activated endothelial cells and LPS-injected mice. Atherosclerosis. 2015;241(2):615-23. Link to article

27. Zhang Y, Yu X, Yuan Y, et al. Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet. 2004;129B(1):16-9.Link to article

28. Rogers KA, Moreno SE, Smith LA, et al. Differences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD. Physiol Rep. 2016;4(12). Link to article

29. Eddy JL, Schroeder JA, Zimbler DL, Caulfield AJ, Lathem WW. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence. J Thromb Haemost. 2016;14(9):1833-43. Link to article

30. Kim SH, Park HS, Hong MJ, et al. Tongqiaohuoxue Decoction Ameliorates Obesity-induced Inflammation and the Prothrombotic State by Regulating Adiponectin and Plasminogen Activator Inhibitor-1. J Ethnopharmacol. 2016; Link to article

31. Lee MT, Lee CC, Wang HM, et al. Hypothermia Increases Tissue Plasminogen Activator Expression and Decreases Post-Operative Intra-Abdominal Adhesion. PLoS ONE. 2016;11(9):e0160627. Link to article

32. Ohkura N, Oishi K, Kihara-Negishi F, Atsumi G, Tatefuji T. Effects of a diet containing Brazilian propolis on lipopolysaccharide-induced increases in plasma plasminogen activator inhibitor 1 (PAI-1) levels in mice. [Access: October 02, 2016]. doi:10.5455/jice.20160814112735

33. Elkhidir HS, Richards JB, Cromar KR, et al. Plasminogen activator inhibitor-1 does not contribute to the pulmonary pathology induced by acute exposure to ozone. Physiol Rep. 2016;4(18).

34. Luo M, Li R, Ren M, et al. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets. Sci Rep. 2016;6:36687. Link to article.

35. Honjo K, Munakata S, Tashiro Y, et al. Plasminogen activator inhibitor-1 regulates macrophage-dependent postoperative adhesion by enhancing EGF-HER1 signaling in mice. FASEB J. 2017; Link to article

36. Li LF, Lee CS, Lin CW, et al. Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway. PLoS ONE. 2017;12(2):e0172571. Link to article

37. Oishi K, Ohkura N, Kasamatsu M, et al. Tissue-specific augmentation of circadian PAI-1 expression in mice with streptozotocin-induced diabetes. Thromb Res. 2004;114(2):129-35. Link to article

38. Naoki Ohkura; Fumiko Kihara-Negishi; Akira Fujii; Hiroaki Kanouchi; Katsutaka Oishi; Gen-Ichi Atsumi; Masanobu Nagano. Effects of Fermented Rice Vinegar Kurozu and Its Sediment on Inflammation-Induced Plasminogen Activator Inhibitor 1 (PAI-1) Increase. Food and Nutrition Sciences. 2018;09. Link to article

39. Henke AS, et al. Inhibition of Plasminogen Activator Inhibitor 1 Attenuates Hepatic Steatosis but Does Not Prevent Progressive Nonalcoholic Steatohepatitis in Mice. Hepatology CommuniCations, Vol. 0, no. 0, 2018. Link to article

40. Liu Y, Wang L, Luo M, et al. Inhibition of PAI-1 attenuates perirenal fat inflammation and the associated nephropathy in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab. 2018; Link to article